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COMPARISON OF THE ANALYSIS METHODS FOR THE EVALUATION OF LOCAL SECOND 

ORDER EFFECTS IN CONCRETE STRUCTURES – “NOMINAL STIFFNESS” METHOD AND 

“NOMINAL CURVATURE” METHOD 

(Ing. Andrea Bidoli – andrea@csi-italia.eu) 

INTRODUCTION 

Second order effects in reinforced concrete structures are largely influenced by several nonlinear 
factors such as cracking of sections and viscosity of material. A detailed analysis of the 
phenomenon would imply the use of complex models that are not suitable for the analysis of 
entire structures. For this reason, all the modern design codes propose the use of simplified 
methods for the evaluation of second order effects in structural elements. Such approaches have 
the significant advantage of being applied to the analysis results, amplifying the member’s forces 
by a proper factor. 
The simplified methods provided by the main international design codes can be divided into two 
separate categories: methods based on the “nominal stiffness” of the elements (EC2, ACI 318) 
and methods based on the “nominal curvature” (EC2). The aim of this paper is to evaluate the 
accuracy of these procedures in the determination of local second order effects in concrete 
columns and to provide appropriate guidelines for their application within the VIS software. At 
this purpose, the results obtained with the simplified methods have been compared with those 
corresponding to a general nonlinear analysis, as defined at § 5.8.6 of UNI EN 1992-1-1, which 
included the effects of geometric and material nonlinearity.    

Second order effects in concrete buildings 

Second order or “P-Delta” effects refer to the nonlinear effect of a large tensile or compressive 
force upon transverse bending and shear behavior of elements. A compressive stress tends to 
make a member more flexible, while a tensile stress tends to stiffen it against transverse 
deformation (see Figure 1). 
Second order effects in buildings can be divided into two different categories, graphically 
represented in Figure 2: global (P-Δ) effects due to story drifts, and local (P-δ) effects due to 
members deformation between their ends. Global effects are mainly generated by lateral loads 
(wind, earthquake…) and their magnitude depends on the compression forces acting on vertical 
members and on the degree of cracking expected in the lateral resisting elements. Generally, P-Δ 
effects generated from wind or earthquake loads are not influenced by creep, given the short-
term nature of those loads, but the global effects arising from geometrical imperfections or other 
permanent lateral loads are. Local effects, on the contrary, are primarily caused by the gravity 
loads and thus are always strongly affected by the viscous behavior of the concrete. 
The most accurate approach to evaluate the P-Δ effects is to run an elastic second order analysis, 
which directly accounts for the coupling between axial and bending behavior of elements. 
Material nonlinearity is not explicitly modeled, but its effect can be reasonably approximated by 
assigning appropriate stiffness modifiers to the different elements basing on the expected degree 
of cracking and on the pertinent level of creep. 
A similar “direct” approach can not be easily extended to the analysis of local effects: the 
necessity to account for creep, distributed in-span imperfections and material nonlinearity would 
make the modeling very complex and less versatile. For all these reasons the most common 
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techniques to account for P-δ effects are represented by simplified methods that consist in 
amplifying the analysis forces in function of the member’s slenderness, compression level, degree 
of cracking and creep. 

 

Figure 1: second order or “P-delta” effect 

 

Figure 2: global and local second order effects in buildings 

Simplified methods for the determination of second order effects 

All the simplified methods are based upon an analogy with a “model” column having the 
following properties: 

− constant cross section along its length; 

− pinned restraints at both ends; 

− constant axial force and bending moment; 
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− no transversal loads applied over the length. 

Each structural member must first be referred to the corresponding model column by 
determining its effective length and equivalent moment. 
The equivalent moment, 𝑀0, is calculated with reference to the extreme moments, 𝑀1 and 𝑀2. 
Both the European code (EC2) and the American code (ACI 318-14) use the same expression for 
𝑀0, precisely:  

𝑀0 = 0.6 ∙ 𝑀2 + 0.4 ∙ 𝑀1 ≥ 0.4 ∙ 𝑀2 

where |𝑀2| ≥ |𝑀1|. The signs of 𝑀1 and 𝑀2 coincides if the column is bent in single curvature, 
otherwise they are opposite.  
The effective length is defined by the distance between two consecutive inflection points in the 
critical deformed shape of the element. Both the European (EC2 § 5.8.3.2) and the  American (ACI 
318-14 R6.2.5) codes provide approximate methods to calculate effective lengths based on the 
relative rotational stiffness at the ends of the member. 
Once the equivalent column model has been determined, local second order effects can be 
estimated as a function of the maximum expected inflection, calculated according to the 
“nominal stiffness” method (EC2 and ACI 318) or to the “nominal curvature” method (EC2).  

 

Figure 3: definition of the equivalent “model” column  
a) determination of the equivalent moment - b) calculation of effective length 

The American code explicitly states that the global P-Δ effects should be included in the 
calculation of the equivalent moment, therefore the effective lengths to be used in the 
evaluation of local effects must always be determined with reference to the non-sway condition. 
The Eurocode vice versa allows to use the values of 𝑀1 and 𝑀2 derived from a simple first order 
analysis and thus, in such cases, effective lengths must be determined assuming a sway 
condition. The latter approach however is not recommended, since the simplified methods used 
for the determination of local effects are not conceived for the analysis of global effects also. For 
this reason, when P-Δ effects are expected to be relevant, it is always preferable to evaluate 
them using a dedicated approach and include them in the calculation of 𝑀0.  
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“Nominal stiffness” method 

The equilibrium of the model column with reference to its deformed configuration is governed by 
the following second order differential equation: 

𝑣′′𝐸𝐽 + 𝑁𝑣 = −𝑁𝑒0 

where 𝑣 is the lateral deflection of the column and 𝑒0 = 𝑀0/𝑁. By solving this equation it is 
possible to determine the maximum moment acting in the middle section of the member as a 
function of its Euler critical load:   

𝑀𝑚𝑎𝑥 =
𝑀0

1 −
𝑁𝐸𝑑

𝑁𝑐𝑟

 

In the expression above the only unknown is represented by the critical load 𝑁𝑐𝑟: 

𝑁𝑐𝑟 = 𝜋2 ∙
(𝐸𝐼)𝑒𝑓𝑓

𝐿0
2  

The value of this term is proportional to the effective or “nominal” stiffness (𝐸𝐼)𝑒𝑓𝑓  of the 

column, which is influenced by its slenderness, the degree of cracking and the expected viscosity. 
 
The Eurocode 2 gives the following expression for the nominal stiffness (EC2 § 5.8.7.2):  

𝐸𝐼 = 𝐾𝑐𝐸𝑐𝑑𝐼𝑐 + 𝐸𝑠𝐼𝑠 

where the 𝐾𝑐  term reduce the stiffness of the concrete to account for cracking, slenderness and 
viscosity: 

𝐾𝑐 =
𝑘1𝑘2

1 + 𝜑𝑒𝑓

 

𝑘1 = √𝑓𝑐𝑘/20   with 𝑓𝑐𝑘  in MPa 

𝑘2 = 𝑛 ∙ 𝜆/170 ≤ 0.2  

𝑛 = 𝑁𝐸𝑑/(𝐴𝑐𝑓𝑐𝑑)  relative axial force 

𝜆  slenderness of the column in the current direction 

𝜑𝑒𝑓 = 𝜑(∞, 𝑡0) ∙
𝑀0𝐸𝑞𝑝

𝑀0𝐸𝑑
  effective creep ratio 

𝑀0𝐸𝑞𝑝  first order bending moment corresponding to the quasi-permanent 

design load combination 

𝑀0𝐸𝑑   first order bending moment corresponding to the ultimate design load 
combination 

𝜑(∞, 𝑡0)  final creep coefficient as defined in Figure 4 
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The final design moment is then defined by: 

𝑀𝐸𝑑 = 𝑀0𝐸𝑑 [1 +
𝛽

𝑁𝐵

𝑁𝐸𝑑
− 1

] 

in which 𝑀0𝐸𝑑  represents the equivalent moment, 𝑁𝐵  is the critical load calculated with 
reference to the nominal stiffness and 𝛽 is a correction factor which depends upon the 
distribution of moments along the column and can be generally assumed equal to 𝜋2/8.  
 

 

Figure 4: estimation of the final creep coefficient (EC2 fig. 3.1) 

The American code proposes three different formulations for the nominal stiffness: (ACI 318-14 § 
6.6.4.4.4): 

(𝐸𝐼)𝑒𝑓𝑓 =
0.4 ∙ 𝐸𝑐𝐼𝑔

1 + 𝛽𝑑𝑛𝑠

(𝐸𝐼)𝑒𝑓𝑓 =
0.2 ∙ 𝐸𝑐𝐼𝑔 + 𝐸𝑠𝐼𝑠𝑒

1 + 𝛽𝑑𝑛𝑠

(𝐸𝐼)𝑒𝑓𝑓 =
𝐸𝑐𝐼

1 + 𝛽𝑑𝑛𝑠

 

in which: 
𝐼𝑔  moment of inertia of gross concrete section about centroidal axis neglecting 

reinforcement 

𝐼𝑠𝑒  moment of inertia of reinforcement about centroidal axis of member cross section 
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𝐼 moment of inertia of section calculated according to table 6.6.3.1.1.(b) of the code 

𝛽𝑑𝑛𝑠 ratio of maximum factored sustained axial load to maximum factored axial load 

corresponding to the considered load combination. 

The maximum bending moment is then calculated as: 

𝑀𝑐 = 𝛿 ∙ 𝑀2 

with 

𝛿 =
𝐶𝑚

1 −
𝑃𝑢

0.75 ∙ 𝑃𝑐

≥ 1 

In the previous expression 𝑃𝑐  identifies the critical axial force, calculated with reference to the 
effective stiffness, and 𝐶𝑚 = 0.6 − 0.4 ∙ 𝑀1/𝑀2 represents the equivalent moment coefficient. 
 
The formulations proposed by both the codes are very similar but the Eurocode adopts a more 
refined approach to account for viscous effects by considering the influence of environmental 
conditions, notional size of the elements, strength class of the concrete and age of the concrete 
at the time of loading; whereas the American code uses a simplified approach based on the ratio 
between the sustained load and the total load. 
 
The curve that represents the total moment in the column as a function of the axial force tends 
asymptotically to infinite when 𝑁 → 𝑁𝑐𝑟  (see Figure 5). 

 

Figure 5: maximum total moment acting in the column model according to the “nominal stiffness” 
method  
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“Nominal curvature” method 

The “nominal curvature” method is based on a completely different approach: with reference to 
Figure 6, the red curve represents the M-N interaction surface of the column’s section without 
considering second order effects; the model column, however, could not withstands the 
theoretical value of resisting moment at its ends, because the induced deflection generates an 
additional bending moment in the middle section that causes the premature collapse of the 
member. Therefore given the design value of the axial force, 𝑁𝐸𝑑, and the corresponding total 
deflection at collapse, 𝑒2, the maximum value of bending moment that the column can develop 
will be: 

𝑀𝑅𝑑
′ = 𝑀𝑅𝑑 − 𝑁𝐸𝑑 ∙ 𝑒2 

The strength check can then be expressed in the following form:  

𝑀𝑆𝑑 + 𝑁𝐸𝑑 ∙ 𝑒2 ≤ 𝑀𝑅𝑑  

where the term 𝑁𝐸𝑑 ∙ 𝑒2 defines the second order contribution at collapse. 

 

Figure 6: reduction of column’s resisting moment due to second order effects 

In the previous equation the only unknown is represented by the deflection 𝑒2. For the 
calculation of this term, a sinusoidal distribution of displacements along the columns is assumed: 

𝑒(𝑥) = 𝑒2 ∙ 𝑠𝑒𝑛 (
𝜋

𝐿
𝑥) 

By indicating with 1/𝑟 the curvature of the middle section at collapse, the corresponding 
deflection can be expressed by: 

1

𝑟
= 𝑒′′ (

𝐿

2
) = 𝑒2 ∙

𝜋2

𝐿2
   →    𝑒2 =

1

𝑟
∙

𝐿2

𝜋2
 

EC2 (EC2 § 5.8.8.3) suggests the following formulation for the curvature: 
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1

𝑟
= 𝐾𝑟 ∙ 𝐾𝜑 ∙

1

𝑟0

 

where 

1/𝑟0  = 휀𝑦𝑑/(0.45 ∙ 𝑑)    base value of the curvature 

𝐾𝑟 = (𝑛𝑢 − 𝑛)/(𝑛𝑢 − 𝑛𝑏𝑎𝑙) ≤ 1   correction factor depending on axial load 

𝑛𝑢 = 1 + 𝜔     

𝑛 = 𝑁𝐸𝑑/(𝐴𝑐𝑓𝑐𝑑)   relative axial force 

𝑛𝑏𝑎𝑙  value of 𝑛 at maximum moment resistance 

𝐾𝜑 = 1 + 𝛽𝜑𝑒𝑓 ≥ 1   correction factor that accounts for creep 

𝜑𝑒𝑓  effective creep ratio (see previous paragraph) 

𝛽 = 0.35 + 𝑓𝑐𝑘 200⁄ − 𝜆/150  

𝜆      slenderness ratio of the column 

 

For 𝑛 < 𝑛𝑏𝑎𝑙 the curvature is constant and its magnitude increases with the concrete class and 
the level of viscosity. When 𝑛 > 𝑛𝑏𝑎𝑙 the curvature starts to decrease and becomes zero for 𝑛 =
𝑛𝑢. 

 

Figure 7: curvature distribution in the critical section of the column 

Comparing the second order moment calculated with the “nominal curvature” approach with the 
one corresponding to the “nominal stiffness” method the difference is noticeable (see Figure 8): 
the latter tends to infinite when 𝑁𝐸𝑑 → 𝑁𝑐𝑟  while the first decreases as 𝑁𝐸𝑑 > 𝑁𝑏𝑎𝑙 . The main 
problem with the curvature approach is that it always assumes that the collapsed configuration 
of the column is stable whereas, if the axial force exceeds the critical value, this is not true and 
the equilibrium could not be enforced.  
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Figure 8: second order moment in the model column.  
a) “nominal stiffness” method - b) “nominal curvature” method 

General method based on nonlinear analysis 

As an alternative to the simplified methods, the Eurocode 2 allows to use a more general 
approach, based on a nonlinear analysis, for the evaluation of local second order effects. Such 
analysis must explicitly model material nonlinearity and account for creep and imperfections and 
thus requires a high computational cost. For this reason its application to the analysis of entire 
buildings is fairly limited but, on the contrary, this method represents a very powerful tool for the 
evaluation of local effects in isolated members, whose internal forces have been calculated by an 
elastic second order analysis of the entire structure. In this way it is possible to obtain very 
accurate results by considering the effective distribution of moments along the element. 

 

Figure 9: evaluation of local second order effects in isolated members through a general nonlinear 
analysis 
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The Eurocode 2 provides detailed information about the constitutive laws to use for the different 
materials (EC2 § 5.8.6(3)).  For concrete the following a “no-tension” model is adopted (EC2 Eq. 
3.14): 

𝜎𝑐

𝑓𝑐𝑑

=
𝑘𝜂 − 𝜂2

1 + (𝑘 − 2)𝜂
 

where 
𝜂 = 휀𝑐/휀𝑐1  

휀𝑐1(‰) = 0.7 ∙ 𝑓𝑐𝑑
0.31 < 2.8  

𝑘 = 1.05 ∙ 𝐸𝑐𝑚/𝛾𝑐𝐸 ∙ |휀𝑐1|/𝑓𝑐𝑑   

 
In the absence of more refined model, creep may be taken into account by multiplying all the 

strain values by a factor (1 + 𝜑𝑒𝑓). 

 
For reinforcing steel, a symmetric elastic-perfectly plastic distribution is assumed (EC2 § 3.2.7). 
 

 

Figure 10: nonlinear stress-strain diagram for concrete. 
a) Without creep – b) With creep 

 

Figure 11: elastic-perfectly plastic stress-strain distribution for steel 



 

11 
 

Comparison of the analysis methods for the evaluation of local second order effects 

In order to determine the accuracy of the available methods for the evaluation of local second 
order effects in concrete members, the results in term of maximum axial capacity obtained for 
the same model column have been compared. The approaches that have been taken into 
consideration are: 

1. “nominal stiffness” method as defined in EC2 § 5.8.7; 
2. “nominal curvature” method as defined in EC2 § 5.8.8; 
3. general method, based on a nonlinear analysis, as defined in EC2 § 5.8.6 and run with the 

SAP2000 commercial software. 

The case study was represented by an isolated column with a section of 30 by 30 cm and an 
effective length of 5 m subjected to an eccentric axial load. The eccentricity of the load has been 
assumed constant and equal to the value corresponding to the geometric imperfections for 
isolated members as defined in EC2 § 5.2(7): 

𝑒0 = 𝑙0/400 

The maximum axial capacity according to the simplified methods has been evaluated by 
calculating the maximum bending moment corresponding to increasing values of axial force until 
the curve intersected the M-N strength domain of the section (see Figure 12). The capacity 
corresponding to the nonlinear analysis has instead been estimated based on the curves 
obtained from a displacement control analysis at fixed eccentricity ( see Figure 13).  

 

Figure 12: maximum axial capacity of the column calculated through the simplified methods. 
a) Nominal stiffness method – b) Nominal curvature method 
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Figure 13: maximum axial capacity of the column calculated through a nonlinear FEM analysis 

The influence of concrete strength and rebar intensity have been evaluated by considering two 
different concrete classes and reinforcing arrangements. Creep effects have been included 
assuming a time of initial load, 𝑡0, equal to 28 days and a ratio between quasi-permanent loads 
and ultimate loads equal to 0.62.  
All the tested configurations are reported in the following table.   
  

Case 
study 

Section 
fck l0 

ϕ(∞,t0) M0Eqp/M0Ed ϕef 
N/mm2 m 

1 30x30 - 4Ø16 32 5 2.00 0.62 1.23 

2 30x30 - 8Ø16 32 5 2.00 0.62 1.23 

3 30x30 - 4Ø16 50 5 1.30 0.62 0.80 

4 30x30 - 8Ø16 50 5 1.30 0.62 0.80 

 
In order to evaluate the accuracy of the simplified methods, the results corresponding to the 
nonlinear analysis have been assumed as reference values. The nominal stiffness approach 
resulted in good accordance with the general method and always produced conservative results 
with an average underestimation of strength of about 7%. On the contrary, the axial capacities 
calculated with the nominal curvature method were always higher than the reference values, 
with an average overestimation of more than 25%. 
 

Case 
study 

Section 

NL FEM Nom. Stiffness Nom. Curvature 

Nu Nu diff Nu diff 

kN kN % kN % 

1 30x30 - 4Ø16 1234.0 1140.0 -8% 1550.0 26% 

2 30x30 - 8Ø16 1416.0 1350.0 -5% 1780.0 26% 

3 30x30 - 4Ø16 1798.0 1630.0 -9% 2260.0 26% 

4 30x30 - 8Ø16 1973.0 1840.0 -7% 2480.0 26% 

 
The same comparison has been repeated for another model column with the same properties 
but a lower effective length, reduced to 3 m. In this case both the simplified approaches provided 
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slightly unconservative results with an average overestimation of the final axial capacity of about 
8% for the nominal stiffness method and 11% for the nominal curvature method. 
  

Case 
study 

Section 
fck l0 

ϕ(∞,t0) M0Eqp/M0Ed ϕef 
N/mm2 m 

5 30x30 - 4Ø16 32 3 2.00 0.62 1.23 

6 30x30 - 8Ø16 32 3 2.00 0.62 1.23 

7 30x30 - 4Ø16 50 3 1.30 0.62 0.80 

8 30x30 - 8Ø16 50 3 1.30 0.62 0.80 

 

Case 
study 

Section 

NL FEM Nom. Stiffness Nom. Curvature 

Nu Nu diff Nu diff 

kN kN % kN % 

5 30x30 - 4Ø16 1594.0 1720.0 8% 1775.0 11% 

6 30x30 - 8Ø16 1847.0 1985.0 7% 2050.0 11% 

7 30x30 - 4Ø16 2346.0 2525.0 8% 2615.0 11% 

8 30x30 - 8Ø16 2593.0 2785.0 7% 2885.0 11% 

 
By looking at the detailed graphical results (reported in the figures below) the nominal stiffness 
method appears to be more accurate in predicting the behavior of each configuration of both the 
long and the short column and produced conservative results for almost any range of admissible 
axial forces. The nominal curvature approach on the contrary, resulted over-conservative for low 
values of axial force while it became unconservative for increasing value of N. Both the simplified 
methods slightly underestimated the response of the short column for high values of axial force. 

 

Figure 14: section 30x30 /  fck=32 / 4ø16 / L0 = 5m / 𝜑ef = 1.23 
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Figure 15: section 30x30 /  fck=32 / 8ø16 / L0 = 5m / 𝜑ef = 1.23 

 

Figure 16: section 30x30 /  fck=50 / 4ø16 / L0 = 5m / 𝜑ef = 0.8 
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Figure 17: section 30x30 /  fck=50 / 8ø16 / L0 = 5m / 𝜑ef = 0.8 

 

Figure 18: section 30x30 /  fck=32 / 4ø16 / L0 = 3m / 𝜑ef = 1.23 
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Figure 19: section 30x30 /  fck=32 / 8ø16 / L0 = 3m / 𝜑ef = 1.23 

 

Figure 20: section 30x30 /  fck=50 / 4ø16 / L0 = 3m / 𝜑ef = 0.8 
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Figure 21: section 30x30 /  fck=50 / 8ø16 / L0 = 3m / 𝜑ef = 0.8 

Implementation of simplified methods in the software VIS 

Local second order effects in concrete members are directly influenced by several different 
variables such as cracking of sections, creep, slenderness ratios and geometric imperfections. A 
correct design approach must take into consideration all these aspects in order to prevent 
possible local failures of slender members. The modern design codes provide simplified methods 
to amplify the design forces on slender columns based on the corresponding nominal stiffness 
(EC2 and ACI 318) or the expected nominal curvature at collapse (EC2). The first approach is 
recommended, especially in the case of slender columns. 
The VIS program, by CSi Italia srl, provides the users with comprehensive options for the 
evaluation of local second order effects in concrete columns (see Figure 22): the default method 
is the “nominal stiffness” but the “nominal curvature” approach can also be selected.  
Effective lengths of columns can be automatically calculated by the program according to EC2 § 
5.8.3.2 basing on the type of analysis (1st Order or 2nd Order) and structure’s definition (sway or 
non sway). If an ordinary linear analysis has been performed and the structure has been defined 
as sway, the program will consider also the contribution of global effects by using an effective 
length greater than the length of the element (EC2 Eq. 5.16). This approach is however not 
recommended and, when P-Δ effects are expected to be significant, it is always preferable to run 
a second order analysis to model global effects and use the simplified methods to account for 
local effects only. 
The influence of geometric imperfections can also be added: equivalent moments will be 
calculated considering all the possible permutations of accidental eccentricity along each 
principal direction. 
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For detailed information about the design procedure used in the VIS program to account for 
second order effects, please refer to the § 1.2 and § 2.1.3 of the “VIS Design Manual” that is 
available in the “Download” section of our website.     

 

Figure 22: second order settings 
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Figure 23: geometric imperfections definition 
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